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ABSTRACT 

It is of general interest to find criteria for a matrix to be positive 
(or negative)- semidefinite. The usual characterization of semi- 
definite matrices in terms of their principal minors can be rather 
laborious to implement practically. We present here an elementary 
proof ot a known alternate characterization of a semidefinite matrix 
in terms of its null-space and of its largest characteristic value. An 
iterative procedure is also suggested which may be useful in deciding 
the   semidefiniteness   of  a  matrix. 
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A NOTE ON SEMIDEFINITE MATRICES 

In what follows   A will always represent a real,   symmetric,  nxn 

n (*) T (**) matrix.    If,  for each   xeR    '      it is true that   xAx    >    (r        then we say 

T T that  A  is positive- semidefinite,   denoted: p. s.d. ;    if   (xAx   ){yAy   )   >   0 

for all   x, y c R      we  say that   A  is semidefinite,   denoted s.d.   .     We first 

prove the following: 

THEOREM  1.       The following are equivalent: 

(i)     A  is  s.d. 

(ii)     {xAyT)     <   (xAxT)(yAyT)    , all   x.   y e Rn 

(iii)     xeR   ,   xAx     =  0—> xA x     =  0 

(iv)     xeRn,   xA2xT =   1 -=? (xAxT)    >  0 

(v)     xeRn,   xAxT  =  0 =^ xA    =   0 

PROOF:      We  show (i) =4 (ii) =^ (iii) =4 (iv) =* (v) -=* (i). 

(i)=> (ü) 

Suppose   A   is s.d. ,   let x.yeR   .     Consider the real quadratic polynomial  p 

defined by: 

p(\)  = (x + Xy)A(x + Xy)T  = 

T T        2 T ■ xAx     + ZXxAy     + \ yAy    . 

Since   A  is s.d. ,   p   does not change sign,   i. e- ,   its discriminant is non- 

positive,  whence: 

4(xAyT)     - 4(xAxT)(yAyT) <   0  , 

TW 
R     ■    KX tz > (X| x  ) and  x.   is a real number for   i=i,   ...,   n>-. 

(**) n       T If  xeR   ,   x       denotes the transpose of   x. 



giving the desired result. 

(ii) =»(iii). 
n T T 

Suppose   xeR      and   xAx     =0,   then,   from (ii),   (xAy   )   < 0,   i. e. , 

xAyT = 0,   for all   y€Rn.      Thus    xA = 0,   but   xA2xT = (xA)(xA)T = 0. 

(iii) ■=» (iv). 

If   xeRn   and   (xAxT)    <   0   then   xAxT = 0   and,   by (iii),   xA2xT = 0, 

2   T       , contradicting   xA  x     =1. 

(iv)=»(v). 

If  x c R      and   xAx     ■ 0    then,   by (iv),   xA  x     <  0   (because if xA  x     >  0 

2   T T then we could normalize    x   to get   xA  x     =1,   xAx     ■ 0).    However, 

2   T T 2   T xA  x     = (xA)(xA)    ,   and thus   xA   x    >    0   with equality holding if and only 

if   xA = 0. 

(v)^(i)- 

Suppose (i) is false,   i.e.,   there exist    x, y e R      such that   xAx     > 0, 

yAy      <   0.     By suitable normalization   [dividing   x   by (xAx) and   y   by 

T 1 /2 T T (-yAy) J,   we may assume that   xAx     =  1,    yAy     ■    -1.     Now let: 

T T 2     1/2 

(1) X  =    -xAy      +    [ 1 + (xAy    )     ] 

(2) z    ■    \x + y    . 

wm 

We claim that   zA ^   0    and   zAz      = 0,   thus contradicting (v).     First,   if 

T T zA = 0    then multiplying (2) by    Ax       and   Ay       we get: 

T T T 0   ■    XxAx     + yAx     =    X. + xAy 

T T T 0  ■ XxAy     + yAy     =    XxAy      -   1   , 

Combining the last two equations: 

T 
0 XxAy' 1  = (-xAyT)(xAyT)  -   1   ■ 

.l-(xAyT)2 



a contradiction,   thus   zA ^   0.     However, 

zAzT = (Xx + y)A(X.x+y)T  = 

2 T T T « \ xAx     + 2X.xAy     + yAy 

2 T = X    + 2\xAy      -   1  , 

and   \   was chosen to be precisely one of the two (real) roots of the preceding 

quadratic polynomial in X.. q. e. d. 

Several comments are in order.     Obviously,   A is  s.d.   if and only if 

A   is p. s. d.     or  -A    is p. s. d.      Condition (ii) of Theorem  1 is a generaliza- 

tion of the Cauchy-Schwartz inequality,   namely: 

(3)     {uvT)    <   (uuT)(vvT)        all   u.veRn. 

for if we take    A   to be the    nxn   identity matrix which is clearly p. s. d. ,   we 

obtain (3) from (ii)  - Theorem   1.    Condition (v)  -  Theorem  1,   or its obvious 

equivalents (iii) and (iv),   states that if we consider    xA,   the image under the 

linear transformation  A    of a point   x   in   R   ,   then   A   cannot be perpendicular 

to   x   unless    x   is in the null-space of  A.    Alternately  ,     (v)  -  Theorem   1 

states that if   x   is not  in the null-space of   A   then its image under A cannot 

be perpendicular to x. 

We proceed next to obtain results which are,,   in a sense,   "refinements" 

of conditions (ii) (see Lemma   1 below) and (iv) (see Theorem 2) of Theorem 1. 

Lemma  1 is a generalization of the well known fact    associated with the 

Cauchy-Schwartz inequality, stating that equality holds in (3) if and only if 

u, v  are linearly dependent.    We shall apply Lemma   1 in the proof of Theorem 

3. 
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LEMMA  1 

Let   A   be  s.d..      If   x,yeRn   then   (xAy    )     = (xAx    )(yAy   )    if and only if 

xA, yA   are linearly dependent. 

T PROOF:       If,   say,    xA ■ VyA,   where   X.    is a real number,   then  xAy     = 

T T T T        2 T VyAy       while   xAx     ■ KyAx     ■   XxAy     ■ \ yAy    .    Whence it follows that 

(xAy1)     =    \C{yAYl)     = (xAx1 )(yAy 1). 
rj. 2 T X X 

On the other hand,   suppose    (xAy    )     ■ (xAx   )(yAy    ).    If   xAx     = 0 

X or    yAy     = 0   then,   by (v)  - Xheorem  1,   xA = 0    or    yA = 0   and we certainly 

X can conclude that   xA,   yA   are linearly dependent.    Otherwise,   say,   xAx    > 0 

XX X and     yAy      > 0,   consequently   xAy      ^ 0.        Let    p ■  signum (xAy   )    and let: 

a    =   (yAy    ) 

P    =    -p(xAx   ) 

then       a, p ^ 0   and: 

(ax + py)A(QX + py)T  = a2xAx      + p yAy     + ZapxAy      ■ 

=    2(xAxT)(yAyT) -  2p(xAyT)(xAxT) 1/2(yAyT)1/2    - 

=    2(xAxT)(yAyT?  -  2 |xAyTi ;xAxT) 1/2(yAyT) 1/2    = 

=   2(xAxTKyAyT) -2(xAxTKyAyT)    ■   C. 

X Xhus,   (ax + Py)A(ax + Py)      - 0    and,   by (v)  -  Xheorem  1,   0=(ax + Py)A = 

= axA + PyA. q. e. d. 

Xhe preceding lemma was motivated,   in part,   by an examination of 

(ii)  -  Xheorem  1 in case   A   is the identity matrix,   in that case (since the 

square of the identity is the identity),   (iv)  -  Xheorem  1  states:    xeR   , 
X X 2 

xx      =  1    implies (xx   )     > 0,   which is,   of course,  true.     We notice,   though, 

X  2 

that (xAx   )      has then a positive lower bound,   namely   1.    In general,   this 
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T 2 
will be the case,   i. e. ,   a positive lower bound will exist for (xAx   )      in 

Jiv)  -  Theorem  1,   whenever   A   is  s.d..    Clearly,   when   A   is identically 

zero any positive number will serve as a lower bound,   because there is no 

xeRn   for which   xA^x     ■   1,   thus we will exclude   A = 0 in the next theorem: 

THEOREM 2 

Suppose   A   is p. s. d.    and A ^ 0,   then there exist a positive real number \x 

and an   x^eR      such that: 

(4) x e R   ,   xA  x     =1    s^   xAx      >     |JL 

2     T T 
(5) XQA  X0     =   1       and       xoAxo     =     HL- 

PROOF:       Let 

X  =   /x I x€Rn       and     xA2xT  ■  1 
L J 

T ji =   inf xAx 

xeX 

Since   A   is p. s.d.    and   A £  0,  p il well defined and in fact   |JL  >  0 

:-nd satisfies (4).     By definition of fj.,   there exists a  sequence    xk     such that 

6)       xkfrX for     k -  1,   2,   . . . 

{7;        x. Ax,  '        converges to (a. 

We consider two cases: 

Case   1.     The sequence     x.        ha 3 a bounded subseqaeiace.     In this eventuality 

the   x,     have a p)oint of accumulation   x0,   for vihich it must be true (by (6) and 

T {7} and because   X   is closedli that   XQC X   and   x0A.xr     = fi.      Thus   x^    satis- 

fies (5).    That   ja   is positive then follo-w, b from (v) -  Theorem  1.     The two 

preceding facts,   together with the remark above that   ^    satisfies 4,   complete 

the nroof. 



Case 2.     The sequence A *,   v    has no bounded subsequence,   i.e. ,   we may- 

assume that    l*   \     =     (Xj x^  ) —   K,   and(xk|>   0,    k =  1,   2.   .... 

We define another sequence    I y,   I     by: 

k \Xk\ 

T T Now,   y. Ay.        converge     to zero,  because    x^AXj^      converge    to   [i.   and also 
2     T 2 i 

y   A y.        converge to zero,   because    x^A   x^ =   1    all   k.    However,      \ Y-^K   ~  *« 

thus the   y.'s   have an accumulation point   y,   for which it must be true that 
K 

yAy     = 0.     Thus   yA = 0    by (v)   - Theorem   1. 

Next we observe that from the definition of   y   and the   y^'s   it follows 

that whenever    y   has a non-zero component then infinitely many   x^'s   have 

the same component non-zero,   and in fact of the  same sign.    We may assume 

that an appropriate subsequence of     x,        has been selected so that whenever 

y   has a positive (negative) component then all the   x, 's   have the  same 

component positive (negative).     Now,   if | Xjl    is any sequence    of real 

numbers then: 

(xk ♦ v)A(xk 
+ K

ky)T - V^J 
2 T 2     T and (x^. f Xky)A   (^ + Xky)     =   x^A.   xk      , 

because   yA -- 0.     We can thus replace   xk   by    xk +   ^-^V•   k =  1,   2,   ....    and 

(6) and (7) will still hold.    However,   by an appropriate choice of     k.    we can 

reduce the number of non-zero components in each of the   xk's>   eventually 

(repeating the above process,   if necessary) we obtain a sequence ^ Xj^ I,  , 

satisfying (6)-(7) and which has an accumulation point,   thus reducing it to 

case  1. q- e- d- 
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As an immediate consequence of Theorem 2 we can "strengthen' 

(iv) - Theorem  1. 

Corollary 

If   A   is  s.d.    and   A ^  0    then 

.2 
minimum | ^xAx*1"^  |   x e Rn     and     xA2xT =    1 j 

exists and is positive. 

PROOF:      As noted before,   if   A   is s.d. ,   then either   A    is p. s.d.   or    -A is 

p. s.d. ,   in either case the  square of the    y.   in Theorem 2 is the required 

minimum and the   x-    of the same theorem is the required minimizing   x. 

The    |JL   and   x-    of Theorem 2 are,   as one might expect,   intimately 

related to the characteristic values of A.     This is brought forth in the next 

theorem. 

THEOREM 3 

Let   A   be p. s. d. ,   A ^ 0.     Let    fi   and   xn    be as in Theorem 2 and let   X      be 

the largest characteristic value of  A,   then   \n-\J.       and   xnA   is a character- 

istic vector  of    A    corresponding to    A.   . 

n 

■ u.       and   xnj n    ^ 0 

PROOF:       Suppose     \     is any characteristic value of   A,   i.e.,   there exists 

an   xeR   ,   x ^ 0,   such that   xA ■ \x,   whence   xA x      =   \xAx    .     If   X  = 0 then 

certainly    \   <   \i    .    Assuming    X. ^ 0,   it follows that    xA ^   0 (because   x ^   0 ) 

T 2   T  - 1 / 2 and thus,   by (v)  -  Theorem  1,   xAx    >  0.       Let   y ■ (xA  x    )     '''x,   then 

2 T T 2 T -1 T yA  y =   1    and,   by definition of   |JL,   yAy     >   \i.    However   yAy     = (xA x  )    (xAx   ) 

-    X.    ,     thus   \   <  y.    .      We have just demonstrated that   X.   <   |JL       for any 

characteristic value   X    of   A,   thus     X.      <   u      . n   —  n 
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To complete the proof of this theorem it will suffice to show that there 

is a characteristic value   X.    of   A    such that   \ = p.    ,   and   (x^A) A = X.(xnA), 

x-    being as in Theorem Z.     Let   x = xn    be a minimizing   xn    in question. 

Since   A   and   A     are p. s.d.   (the square of any real symmetric matrix is 
T T 3   T p. s.d.),   and    xA ^   0 (xAx     =   x-Ax-     = ^  >   0),   it follows that   xA   x       = 

= (xA)A(xA)T >  0,   and   xA4x = (xA)A2(xA)T>   0.    Thus,   if we define 

(8) p    =   2(xA3xT)(xA4xT)"1 

then   p    is positive.     Next let 

(9) y    =   x -  p x A    . 

The motivation for the above definition of   y    is as follows:    we know   x 

minimizes a certain function,   namely   xAx,   since we wish to derive from 

this fact some properties of   x   we examine how   xAx   will change in the 

direction of its gradient,   namely    2xA.    As defined in (9),   y   is a translation 

from   x   precisely in the direction of that gradient,   the particular value of  p 

chosen is designed to keep   y   within the  "feasibility" set,   i. e. ,   yA y =  1. 

We check next the last mentioned condition: 

2   T 2 T yA y      = (x -   pxA)A   (x -  pxA)      - 

.2T      ,       .3T2.4T ■ xA x     -  2pxA x     + p   xA   x     = 

-   1  -  2p   [xA3xT  -   ■^(xA4xT)] 

=   1 -  2p  [xA3xT-(xA3xT)(xA4xTr1(xA4xT)J 

=    1  . 

One can,   incidentally,   readily check that the particular value of  p,   as given 

in (8),   is the only value of   p   (other than   p = 0) which yields  yA y =   1.    Now, 
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L   T since   yA y      -   1.   we must have,   by definition of   \x, 

( 10)     yAy1   - xAx1   >   0. 

However, 

T T T T yAy    -  xAx      = (x-pxA)A(x-pxA)     -   xAx      = 

A2   T 2   A3   T - -ZpxA x    +   p   xA x     = 

,    I   p  ,    .3   T>       -    .2   T.l 2p ! -t- (xA x   )  -  (xA x    ) j   = 

4   T  - 1 - 2p(xA  x    ) ^..T.Z    ,_A2_T»i_A4_Tj'] (xA x   )   -  (xA x   )(xA x 

4   T     1 Thus,   since   p   >   0,   (xA x    )        >   0    and because (10) holds,   we have: 

3   T 2 »   T 4   T 
(11) (xA x1)     >   (xA2x1){xA. x1)  . 

vVre now refer to inequality (3),   which is a special case of (ii)  - Theorem   1 

with   A   being the identity,   letting    u  a xA,   v ■ xA      we get: 

3   T 2 2   T 4   T 
(12) (xA x   )    <   (xA x    )(xA x   )  . 

Combining ( i 1) and (12),   we get: 

(13) (x^3xT)2  « (xA2xT)(xA4xT)   . 

However,   from Lemma   1,   again with   A  being the identity matrix,   we then 

know that   xA,   xA     are linearly dependent.     Since    xA ^  0,   it follows that 

there is a real number    \     such that    xA    -\xA,   multiplying by 

2T T T-l-1 x^   : 1  = xA x     - KxAx    ,   and   X.  = (xAx   )        = |a    . q. e. d. 

As a final general  result,   we specialize (ii)  -  Theorem   1,   and Lemma 

1,   for the case where   A   is non-singular. 



/ 

THEOREM 4 

Let   A   be p. s.d.    and non-singular then, 

(14) (uvT)2  <   (uAuT)(vA"1vT)     all   u.veRn 

and equality holds above if and only if   u, vA      are dependent. 

PROOFi      We first note that   A"     must be symmetric because   AA"    = I, 

T -IT -ITT -IT thus    I     = I = (AA    )      = (A   )    A     = (A   )   A.    But the  inverse is unique, 
-1 1   T n 

thus   A     = (A" )    .    Next,   let   u,veR   ,  we let 

(15) x = u,   y = vA"    . 

One readily checks that: 

T T T T T -1   T xAy      - uv    ,   xAx     = uAu    ,   yAy     - vA   v 

Thus the desired inequality (14) follows from (ii)  - Theorem  1.    Now if (14) 

is actually an equation,   then from Lemma   1,   using x, y as defined in (15),  we 

get   u,vA       are linearly dependent.    The converse also follows readily. 

q. e. d. 

Note:    The condition of equality in ( 14) is directly connected with 

characteristic vectors  of A (and of course,   those of A   ),   for 

suppose (14) is an equation and u = v ^   0,   then one sees immediately 

that uA = X.u   for sonne  real number X..    The corresponding converse 

also holds in this case. 

An iterative scheme,   for deciding the definiteness of   A,   based on the 

proof of Theorem 3 might go as follows: 

(a)        By examining the diagonal elements of   A   we have decided that,   if 

at all,    A   is p. s. d. 

10- 



(b) Wm have an   x    such that    xA  £0;    if    xA x   <   0    then   h    is not p. s.d. , 

if   xA x   >   0    normali'/.t     x    so that   xA x  =   i    and proceed to (c) 

(c) We have an   x    such that    xA /Ü,   xA x =  1;    perform the transformation 

given by (8) and (9).    There are three cases: 

T T Case  1.     if   yAy     >   xAx       then   A   is not p. s.d. 

T T Case <L.     if   yAy      <  xAx       return to beginning of (c),   using y as the 

new "test'   vector. 

T T Case 3.    if   yAy      ■ xAx       we have isolated a characteristic vector 

of A,   return to (b) using,   as   x,    a vector independent of all 

characteristic vectors thu." far  obtained. 

The preceding is,   of course,      informal'   in the sense that the iterative 

procedure described above has not been shown to coverge. 

- 11- 
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